
Flask-Store
Release 0.0.2

July 21, 2014

Contents

1 Included Providers 3

2 Usage Documentation 5
2.1 Installation . 5
2.2 Quick Start . 5
2.3 Local Store . 7
2.4 S3 Store . 7
2.5 S3 Gevent Store . 8

3 Reference 11
3.1 API Reference . 11
3.2 Change Log . 16
3.3 Contributors . 16

4 Indices and tables 19

Python Module Index 21

i

ii

Flask-Store, Release 0.0.2

Flask-Store is a Flask Extension designed to provide easy file upload handling in the same vien as Django-
Storages, allowing developers to user custom storage backends or one of the provided storage backends.

Warning: This Flask Extenstion is under heavy development. It is likely API’s will change without warning.

Contents 1

Flask-Store, Release 0.0.2

2 Contents

CHAPTER 1

Included Providers

• Local File System

• AWS Simple Storage Service (S3)

3

Flask-Store, Release 0.0.2

4 Chapter 1. Included Providers

CHAPTER 2

Usage Documentation

2.1 Installation

Simply grab it from PyPI:

pip install Flask-Store

2.2 Quick Start

Getting up and running with Flask-Store is pretty easy. By default Flask-Store will use local file system storage to
store your files. All you need to do is to tell it where you want your uploaded files to live.

2.2.1 Step 1: Integration

First lets initialise the Flask-Store extension with our Flask application object.

from flask import Flask
from flask.ext.store import Store

app = Flask(__name__)
store = Store(app)

if __name__ == "__main__":
app.run()

That is all there is to it. If you use an application factory then you can use flask_store.Store.init_app()
method instead:

from flask import Flask
from flask.ext.store import Store

store = Store()

def create_app():
app = Flask(__name__)
store.init_app(app)

if __name__ == "__main__":
app.run()

5

Flask-Store, Release 0.0.2

2.2.2 Step 2: Configuration

So all we need to do now is tell Flask-Store where to save files once they have been uploaded. For asolute url generation
we also need to tell Flask-Store about the domain where the files can accessed.

To do this we just need to set a configuration variable called STORE_PATH and STORE_DOMAIN.

For brevity we will not show the application factory way because its pretty much identical.

from flask import Flask
from flask.ext.store import Store

app = Flask(__name__)
app.config[’STORE_DOMAIN’] = ’http://127.0.0.1:5000’
app.config[’STORE_PATH’] = ’/some/path/to/somewhere’
store = Store(app)

if __name__ == "__main__":
app.run()

Now when Flask-Store saves a file it will be located here: /some/path/to/somewhere.

2.2.3 Step 3: Add a route

Now we just need to save a file. We just need a route which gets a file from the request object and send it to our
Flask-Store Provider (by default local Storage) to save it.

Note: It is important to note the Flask-Store makes no attempt to validate your file size, extensions or what not, it just
does one thing and that is save files somewhere. So if you need validation you should use something like WTForms
to validate incoming data from the user.

from flask import Flask, request
from flask.ext.store import Store

app = Flask(__name__)
app.config[’STORE_DOMAIN’] = ’http://127.0.0.1:5000’
app.config[’STORE_PATH’] = ’/some/path/to/somewhere’
store = Store(app)

@app.route(’/upload’, methods=[’POST’,])
def upload():

file = request.files.get(’afile’)
provider = store.Provider()
f = provider.save(file)

return f.absolute_url()

if __name__ == "__main__":
app.run()

Now if we were to curl a file to our upload route we should get a url back which tells how we can access it.

curl -i -F afile=@localfile.jpg http://127.0.0.1:5000/upload

We should get back something like:

6 Chapter 2. Usage Documentation

Flask-Store, Release 0.0.2

HTTP/1.1 100 Continue

HTTP/1.0 200 OK
Content-Type: text/html; charset=utf-8
Content-Length: 44
Server: Werkzeug/0.9.6 Python/2.7.5
Date: Thu, 17 Jul 2014 11:32:02 GMT

http://127.0.0.1:5000/flaskstore/localfile.jpg%

Now if you went to http://127.0.0.1:5000/flaskstore/localfile.jpg in your browser you should
see the image you uploaded. That is because Flask-Store automatically registers a route for serving files.

Note: By the way, if you don’t like the url you can change it by setting STORE_URL_PREFIX in your application
configuration.

2.2.4 Step 4: There is no Step 4

Have a beer (or alcoholic beverage (or not) of your choice), that was exhausting.

2.3 Local Store

Note: This document assumes you have already read the Quick Start guide.

As we discussed in the Quick Start guide Flask-Store uses its flask_store.stores.local.LocalStore as
its default provider and here we will discuss some of the more advanced concepts of this store provider.

2.3.1 Enable

This is the default provider but if you wish to be explicit (+1) then simply set the following in your application
configuration:

STORE_PROVIDER=’flask_store.stores.local.LocalStore’

2.3.2 Configuration

The following configuration variables are available for you to customise.

Name Example Value
STORE_PATH /somewhere/on/disk
This tells Flask-Store where to save uploaded files too. For this provider it must be an absolute path to a location on disk you have permission to write too. If the directory does not exist the provider will attempt to create the directory
STORE_URL_PREFIX /uploads
Used to generate the URL for the uploaded file. The LocalStore will automatically register a route with your Flask application so the file can be accessed. Do not place domains in the path prefix.

2.4 S3 Store

Note: This document assumes you have already read the Quick Start guide.

2.3. Local Store 7

Flask-Store, Release 0.0.2

The S3 Store allows you to forward your uploaded files up to an AWS Simple Storage Service (S3) bucket. This takes
the problem of storing large numbers of files away from you onto Amazon.

Note: Amazon’s boto is required. Boto is not included as a install requirement for Flask-Store as not everyone will
want to use the S3 provider. To install just run:

pip install boto

2.4.1 Enable

To use this provider simply set the following in your application configuration:

STORE_PROVIDER=’flask_store.stores.s3.S3Store’

2.4.2 Configuration

The following configuration variables are availible to you.

Name Example Value
STORE_PATH /some/place/in/bucket
For the S3Store is basically your key name prefix rather than an actual location. So for the example value above the key for a file might be: /some/place/in/bucket/foo.jpg
STORE_DOMAIN https://bucket.s3.amazonaws.com
Your S3 bucket domain, this is used to generate an absolute url.
STORE_S3_REGION us-east-1
The region in which your bucket lives
STORE_S3_BUCKET your.bucket.name
The name of the S3 bucket to upload files too
STORE_S3_ACCESS_KEY ABCDEFG12345
Your AWS access key which has permission to upload files to the STORE_S3_BUCKET.
STORE_S3_SECRET_KEY ABCDEFG12345
Your AWS access secret key

2.5 S3 Gevent Store

Note: This document assumes you have already read the Quick Start guide.

The flask_store.stores.s3.S3GeventStore allows you to run the upload to S3 process in a Gevent
Greenlet process. This allows your webserver to send a response back to the client whilst the upload to S3 happends
in the background.

Obviously this means that when the request has finished the upload may not have finished and the key not exist in the
bucket. You will need to build your application around this.

Note: The gevent package is required. Gevent is not included as a install requirement for Flask-Store as not
everyone will want to use the S3 Gevent provider. To install just run:

pip install gevent

8 Chapter 2. Usage Documentation

Flask-Store, Release 0.0.2

2.5.1 Enable

To use this provider simply set the following in your application configuration:

STORE_PROVIDER=’flask_store.stores.s3.S3GeventStore’

2.5.2 Configuration

Note: This is a sub class of flask_store.stores.s3.S3Store and therefore all the same confiuration options
apply.

2.5. S3 Gevent Store 9

Flask-Store, Release 0.0.2

10 Chapter 2. Usage Documentation

CHAPTER 3

Reference

3.1 API Reference

3.1.1 flask_store

Adds simple file handling for different providers to your application. Provides the following providers out of the box:

• Local file storeage

• Amazon Simple File Storage (requires boto to be installed)

class flask_store.Store(app=None)
Flask-Store integration into Flask applications. Flask-Store can be integrated in two different ways depending
on how you have setup your Flask application.

You can bind to a specific flask application:

app = Flask(__name__)
store = Store(app)

Or if you use an application factory you can use flask_store.Store.init_app():

store = Store()
def create_app():

app = Flask(__name__)
store.init_app(app)
return app

check_config(app)
Checks the required application configuration variables are set in the flask application.

Parameters app (flask.app.Flask) – Flask application instance

Raises NotConfiguredError – In the event a required config parameter is required by the
Store.

init_app(app)
Sets up application default confugration options and sets a Provider property which can be used to
access the default provider class which handles the saving of files.

Parameters app (flask.app.Flask) – Flask application instance

provider(app)
Fetches the provider class as defined by the application configuration.

Parameters app (flask.app.Flask) – Flask application instance

11

Flask-Store, Release 0.0.2

Raises ImportError – If the class or module cannot be imported

Returns The provider class

Return type class

register_route(app)
Registers a default route for serving uploaded assets via Flask-Store, this is based on the absolute and
relative paths defined in the app configuration.

Parameters app (flask.app.Flask) – Flask application instance

set_provider_defaults(app)
If the provider has a app_defaults static method then this simply calls that method. This will set
sensible application configuration options for the provider.

Parameters app (flask.app.Flask) – Flask application instance

class flask_store.StoreState(store, app)
Stores the state of Flask-Store from application init.

flask_store.store_provider()
Returns the default provider class as defined in the application configuration.

Returns The provider class

Return type class

3.1.2 flask_store.exceptions

Custom Flask-Store exception classes.

exception flask_store.exceptions.NotConfiguredError
Raise this exception in the event the flask application has not been configured properly.

3.1.3 flask_store.files

class flask_store.files.StoreFile(filename, destination=None)
An Ambassador class for the provider for a specific file. Each method basically proxies to methods on the
provider.

absolute_path()
Returns the absollute file path to the file.

Returns Absolute file path

Return type str

absolute_url()
Absolute url contains a domain if it is set in the configuration, the url predix, destination and the actual file
name.

Returns Full absolute URL to file

Return type str

relative_path()
Returns the relative path to the file, so minus the base path but still includes the destination if it is set.

Returns Relative path to file

Return type str

12 Chapter 3. Reference

Flask-Store, Release 0.0.2

relative_url()
Returns the relative URL, basically minus the domain.

Returns Realtive URL to file

Return type str

3.1.4 flask_store.utils

flask_store.utils.path_to_uri(path)
Swaps for / Other stuff will happen here in the future.

3.1.5 flask_store.stores

Base store functionality and classes.

class flask_store.stores.BaseStore(destination=None)
Base file storage class all storage providers should inherit from. This class provides some of the base function-
ality for all providers. Override as required.

exists(*args, **kwargs)
Placeholder “exists” method. This should be overridden by custom providers and return a boolean
depending on if the file exists of not for the provider.

Raises NotImplementedError – If the “exists” method has not been implemented

join(*args, **kwargs)
Each provider needs to implement how to safely join parts of a path together to result in a path which can
be used for the provider.

Raises NotImplementedError – If the “join” method has not been implemented

register_route = False
By default Stores do not require a route to be registered

safe_filename(filename)
If the file already exists the file will be renamed to contain a short url safe UUID. This will avoid overwtites.

Parameters filename (str) – A filename to check if it exists

Returns A safe filenaem to use when writting the file

Return type str

save(*args, **kwargs)
Placeholder “sabe” method. This should be overridden by custom providers and save the file object to the
provider.

Raises NotImplementedError – If the “save” method has not been implemented

url_join(*parts)
Safe url part joining.

Parameters *parts – List of parts to join together

Returns Joined url parts

Return type str

3.1. API Reference 13

Flask-Store, Release 0.0.2

3.1.6 flask_store.stores.local

Local file storage for your Flask application.

Example

from flask import Flask, request
from flask.ext.store import Provider, Store
from wtforms import Form
from wtforms.fields import FileField

class FooForm(Form):
foo = FileField(’foo’)

app = Flask(__app__)
app.config[’STORE_PATH’] = ’/some/file/path’

store = Store(app)

@app,route(’/upload’)
def upload():

form = FooForm()
form.validate_on_submit()

if not form.errors:
provider = store.Provider()
provider.save(request.files.get(’foo’))

class flask_store.stores.local.LocalStore(destination=None)
The default provider for Flask-Store. Handles saving files onto the local file system.

static app_defaults(app)
Sets sensible application configuration settings for this provider.

Parameters app (flask.app.Flask) – Flask application at init

exists(filename)
Returns boolean of the provided filename exists at the compiled absolute path.

Parameters name (str) – Filename to check its existence

Returns Whether the file exists on the file system

Return type bool

join(*parts)
Joins paths together in a safe manor.

Returns Joined paths

Return type str

register_route = True
Ensure a route is registered for serving files

save(file)
Save the file on the local file system. Simply builds the paths and calls
werkzeug.datastructures.FileStorage.save() on the file object.

Parameters file (werkzeug.datastructures.FileStorage) – The file uploaded by the user

14 Chapter 3. Reference

Flask-Store, Release 0.0.2

Returns A thin wrapper around the file and provider

Return type flask_store.file_wapper.FileWrapper

3.1.7 flask_store.stores.s3

AWS Simple Storage Service file Store.

Example

from flask import Flask, request
from flask.ext.Store import Backend, Store
from wtforms import Form
from wtforms.fields import FileField

class FooForm(Form):
foo = FileField(’foo’)

app = Flask(__app__)
app.config[’STORE_PROVIDER’] = ’flask_store.stores.s3.S3Store’
app.config[’STORE_S3_ACCESS_KEY’] = ’foo’
app.confog[’STORE_S3_SECRET_KEY’] = ’bar’

store = Store(app)

@app,route(’/upload’)
def upload():

form = FooForm()
form.validate_on_submit()

backend = Backend()
backend.save(form.files.get(’foo’))

class flask_store.stores.s3.S3GeventStore(destination=None)
A Gevent Support for S3Store. Calling save() here will spawn a greenlet which will handle the actual
upload process.

save(file)
Acts as a proxy to the actual save method in the parent class. The save method will be called in a
greenlet so gevent must be installed.

Since the origional request will close the file object we write the file to a temporary location on disk
and create a new werkzeug.datastructures.FileStorage instance with the stram being the
temporary file.

Returns Relative path to file

Return type str

class flask_store.stores.s3.S3Store(destination=None)
Amazon Simple Storage Service Store (S3). Allows files to be stored in an AWS S3 bucket.

REQUIRED_CONFIGURATION = [’STORE_S3_ACCESS_KEY’, ‘STORE_S3_SECRET_KEY’, ‘STORE_S3_BUCKET’, ‘STORE_S3_REGION’]
Required application configuration variables

static app_defaults(app)
Sets sensible application configuration settings for this provider.

Parameters app (flask.app.Flask) – Flask application at init

3.1. API Reference 15

Flask-Store, Release 0.0.2

bucket(s3connection)
Returns an S3 bucket instance

connect()
Returns an S3 connection instance.

exists(filename)
Checks if the file already exists in the bucket using Boto.

Parameters name (str) – Filename to check its existence

Returns Whether the file exists on the file system

Return type bool

join(*parts)
Joins paths into a url.

Parameters *parts – List of arbitrary paths to join together

Returns S3 save joined paths

Return type str

save(file)
Takes the uploaded file and uploads it to S3.

Note: This is a blocking call and therefore will increase the time for your application to respond to the
client and may cause request timeouts.

Parameters file (werkzeug.datastructures.FileStorage) – The file uploaded by the user

Returns Relative path to file

Return type str

3.2 Change Log

3.2.1 0.0.2 - Alpha

• Feature: FileStore wrapper around provider files

• Bugfix: S3 url generation

3.2.2 0.0.1 - Alpha

• Feature: Local File Storage

• Feature: S3 File Storage

• Feature: S3 Gevented File Storage

3.3 Contributors

Without the work of these people or organisations this project would not be possible, we salute you.

• Soon London: http://thisissoon.com | @thisissoon

16 Chapter 3. Reference

http://thisissoon.com

Flask-Store, Release 0.0.2

• Chris Reeves: @krak3n

• Greg Reed: @peeklondon

3.3. Contributors 17

Flask-Store, Release 0.0.2

18 Chapter 3. Reference

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

19

Flask-Store, Release 0.0.2

20 Chapter 4. Indices and tables

Python Module Index

f
flask_store, 11
flask_store.exceptions, 12
flask_store.files, 12
flask_store.stores, 13
flask_store.stores.local, 13
flask_store.stores.s3, 15
flask_store.utils, 13

21

	Included Providers
	Usage Documentation
	Installation
	Quick Start
	Local Store
	S3 Store
	S3 Gevent Store

	Reference
	API Reference
	Change Log
	Contributors

	Indices and tables
	Python Module Index

